

Final Deliverable

05/13/2022

Zhaokailu Gu, Yang Hu, Dan Li, Rui Lu, Naijia Wu, Jeffray Tsai, Liam Tay Kearney, Kimberly Shan

Quantitative Methods in Social Sciences, Columbia University

1. Introduction

- 2. Our Approach
- 3. Business Impact
- 4. Limitation & Improvement
- 5. Reflections

1.1 Our Team

Quantitative Methods in the Social Sciences (QMSS)

- Master's of Arts program within the Graduate School of Arts and Sciences at Columbia University
- An innovative, flexible, interdisciplinary degree focusing on quantitative research techniques and strategies

Jeffray Tsai Project Management Business Application

Dan (Jessica) Li Model Architecture, Model Improvement

Zhaokailu (Cece) Gu Data Collection, Model Improvement

Xia (Kimberly) Shan Exploratory Data Analysis

Naijia (Haylie) Wu Model Improvement, Business Application

Rui Lu Model Architecture, Model Improvement

Yang Hu Model Improvement, Business Application

Liam Tay Kearney Data Collection, Preprocessing, ETL

1.2 Project Overview

Context	 Flooding ha Accurate pr Adopting cu 	s caused tremendous los ediction of flood events e tting-edge Deep Learnir	esses and damage in the mables more effective re ag Image Classificatior	United States in recent ye esponse, and mitigation of n Models is of critical impo	ars losses ortance		
Project Overflow	Data Collection Satellite Images (Planet) + Flood event records (NOAA)	Data Preprocessing Target input timespan Balance data structure	Build Model Structure Convolutional neural network (CNN) deep learning image classification model	Model Improvement Pseudo labeling: Increase input data size: Confounder control: Increase input quality Model fine tuning	Business Application Measure economic impact Region expansion		
Outcome & Takeaway	 Our final CNN model achieves an accuracy of 81.06% We apply the model to to a vehicle flood loss assessment to gauge potential mitigated losses The model has potential application to regions which have not experienced significant historical flooding (and thus have limited image data available) but may experience increased flooding in future years due to climate change related threats. 						

1.3 Region Selection

Region Choice: Miami-Dade County

1.3 Region Selection

Excellent market opportunity: Base on current flood system, without our flood model prediction, flood events are estimated to cause \$220.9 billion yearly loss for Miami-Dade

1. Introduction

2. Our Approach

3. Business Impact

4. Limitation & Improvement

5. Reflections

2.1.0 Our Approach - Data

2.1.1 Our Approach - Data

A brief review of data source for historical flooding events - NOAA

- National Oceanic and Atmospheric Administration <u>Storm Events</u>
 <u>Database</u> (source data from National Weather Service)
- Timestamps of all **flood events** in Miami-Dade county with precise start and end times; we choose events from **January 2017 onward**

ID \$	County 🔶	Туре 🗳	Begin Date 🔶	End Date
844788	miami-dade	Flood	08-JUL-19 13:30:00	08-JUL-19 15:30:00
856225	miami-dade	Flood	11-OCT-19 17:00:00	11-OCT-19 19:00:00
984803	miami-dade	Flood	17-SEP-21 17:45:00	17-SEP-21 19:45:00
849890	miami-dade	Flood	14-AUG-19 13:00:00	14-AUG-19 15:00:00
886879	miami-dade	Flood	17-MAY-20 15:00:00	17-MAY-20 18:00:00
896929	miami-dade	Flood	26-MAY-20 18:30:00	26-MAY-20 21:30:00
869837	miami-dade	Flood	23-DEC-19 02:15:00	23-DEC-19 07:15:00
843153	miami-dade	Flood	24-JUN-19 14:50:00	24-JUN-19 16:00:00
930128	miami-dade	Flood	09-NOV-20 20:00:00	13-NOV-20 19:00:00
892252	miami-dade	Flood	26-MAY-20 16:30:00	28-MAY-20 21:00:00

Flood event: "Any high flow, overflow, or inundation by water which causes damage. In general, this would mean the inundation of a normally dry area caused by an increased water level in an established watercourse, or ponding of water, that poses a threat to life or property."

2.1.2 Our Approach - Data

A brief review of data source for imagery - Planet

2.2.0 Our Approach - Model Architecture

Model pipeline and improvement process

Model Evaluation - Pre-trained Models

	ResNet has two advantages:
PacNat	 Deep layers to capture image patterns
RESINCE	 Skip connection to add the output from an earlier layer to a
	later layer to improve model performance
	VGG has two advantages:
VCC	 A reward-winning model that trained based on large amount of data
VUU	 Trained images of fixed size of 224*224 and have RGB channels
	(similar to our data)
	• MahilaNat advantaga:

MobileNet

- MobileNet advantage:
 - Enable to build and deploy neural networks in low compute environment

Model Selection - Pre-trained Models

Pre-trained Model	Training Accuracy	Validation Accuracy	Recall	Precision		Overall Poor Model Performance
ResNet	57.14%	58.97%	27.03%	45.45%		Low accuracy & recall & precision
VGG	73.05%	62.26%	78.38%	55.77%	⇒	Low accuracy & Low precision & Long running-time
MobileNet	92.53%	50.00%	100%	48.05%		Low accuracy &Low precision Overfitting

- Accuracy: the number of correct prediction / total predictions \rightarrow TP/(TP + TN)
- **Precision**: the number of correct positive predictions / total positive predictions \rightarrow TP/(TP + FP)
- **Recall**: the number of correct positive predictions / total positives → TP/(TP+FN)

2.2.2 Our Approach - Model Architecture

Hyperparameter Choices:

epochs = 6

batch_size = 32

Optimizer: Adam

- Accuracy: 77.92% (Validation: 66.67%)
- Recall (validation): 78.38%
- Precision (validation): 61.7%
- The model is sample but overall effective

Takeaway:

- Compared to the pre-trained models, our CNN model shows an improvement in performace
- We could improve model performance (reduce overfitting & increase accuracy) using different techniques.

2.2.3 Our Approach - Model Architecture

- Accuracy: 65.26% (validation: 66.67%)
- Recall (validation): 16.22%
- Precision (validation): 50.00%
- Image augmentation is not effective for current data

Takeaway:

Training and Validation Accuracy

0.80

- Although the image augmentation increased the variation of our flood datasets and solved the overfitting problem, the accuracy score fell.
- Low recall score implying model predicted flood event as non-flood event.

2.2.4 Our Approach - Model Architecture

Model Improvement - Pseudo Labeling

2.2.4 Our Approach - Model Architecture

Model Improvement - Pseudo Labeling

2.2.4 Our Approach - Model Architecture

Model Improvement - Pseudo Labeling

- **Good time:** Flood images taken after flood start time.
- **Bad time:** Flood images taken before flood start time.
- Accuracy: 89.06% (validation 69.32%)
- Recall (validation): 70.27%
- Precision (validation): 68.42%

Takeaway:

- The pseudo labeling process helped increase the accuracy, but led to overfitting
- The overall recall and precision scores are better

2.2.5 Our Approach - Model Architecture

Model Improvement - Image Augmentation + Pseudo Labeling

Precision: 50.00 %

Takeaway:

- Current combination method is not effective for current data
- The overfitting problem remained and generated new fluctuation problems

2.2.6 Our Approach - Model Architecture

30

- 25

20

- 15

- 10

Results

Model Improvement - Fine Tuning

Tuning Roadmap & Model Structure

2.2.7 Our Approach - Model Architecture

Cloud coverage distribution

Takeaway

The cloud coverage distribution difference between flood day images and non-flood day images demonstrates the existence of a cloud confounder problem in input data

21

2.2.7 Our Approach - Model Architecture

Using only low cloud coverage images as inputs is a good solution for the cloud confounder problem

Introduction Our Approach Business Impact I imitation & Impro

4. Limitation & Improvement

5. Reflections

3.1 Business Impacts

Since our model is short-term prediction up to a daily update frequency, the model is well suited for application to business segments with short flood response time

KPMG X QMSS 2022 Spring Practicum, All rights reserved.

Why our

model?

Applied to other regions

They potentially have poorer flood detection systems

Pre-Trained Model Advantages					
Cost effective					
Simple to implement					
Can take advantage of high-frequency (daily) satellite data					
Threshold-optimized					
Model output can be used as an input for flood damage estimation					
Insurance pricing	Public sector		Resource allocation		

- 1. Introduction
- 2. Our Approach
- 3. Business Impact
- 4. Limitation & Improvement
- 5. Reflections

4 Limitation & Further Research

Confounding Adjustment: Casualty-aware Learn

Prevent neural networks from leveraging spurious associations induced by clouds Straightforward to implement and computationally efficient

- 1. Introduction
- 2. Our Approach
- **3. Business Impact**
- 4. Limitation & Improvement

5. Reflections